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Globolakes / Diversity II Case Study 

Identifying homogenous regions for Chlorophyll in Lake Balaton 

Lakes are considered as sensitive indicators of environmental change which are impacted by 

both natural and anthropogenic drivers. The potential impact of climate change on 

freshwater resources is critical, and improved understanding of the observed changes is key 

to ensure better management of aquatic resources.  Large lakes may have several basins or 

areas within them that behave differently in terms of water quality indicators and hence 

these distinct areas may respond differently to drivers.  It is therefore of interest to 

investigate and identify coherent regions 

within lakes which are similar in terms of 

trends, seasonal patterns and levels of 

determinands present.  

In this context, we imagine a set of time 

series, each series corresponding to a pixel, 

observed over time. Coherence can then be 

defined as the synchrony between major 

fluctuations in a set of time series.  Figure 1 

shows an example set of time series curves 

where different colours indicate coherent 

sets of curves.  Coherence in Figure 1 is 

primarily determined by the timing and 

amplitude of the seasonal pattern in the 

curves.  In order to identify regions within 

lakes which are temporally coherent, we 

have taken a clustering approach to identify 

the statistically optimal number of clusters 

which we then map in space.  

The aim of this case study is to investigate statistical methodology that can be used to define 

coherent regions within lakes.  An illustrative example will be presented which considers 

chlorophyll a at Lake Balaton in Hungary. 

Case Study:  Lake Balaton 

Lake Balaton is situated in Hungary and is the largest freshwater lake in Central Europe. It is 

situated 104.8m above sea level with a surface area of 592km2 and an average depth of 3.2m.  

For the case study presented, Earth Observation (EO) data for Chlorophyll a (mg/m3, MPH 

product from the Diversity II project) will be used.  Around 10 years of monthly observations 

were available, covering the time period from June 2002 to April 2012.  EO data are available 

for 8219 pixels covering the lake surface at a resolution of approximately 300m.  A two pixel 

border around the boundary of the lake has been removed due to the high likelihood of edge 

effects. Removing this boundary resulted in 6064 pixels being used in further analysis. 

 

Figure 1: Simulated time series data where different colours 
represent temporally coherent clusters of curves. 
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Methodology 

A functional data analysis approach (Ramsay and Silverman, 1997) has been taken where the 
time series for each pixel is represented as a curve over time.  The curve then becomes the 
observation of interest rather than the individual data values in subsequent analysis and is 
estimated via penalised regression spline smoothing (Eilers and Marx, 1996).  Using such an 
approach provides a smooth estimate of Chlorophyll a for an individual pixel as a function of 
time, removing local variability.  These smooth pixel curves then become the ‘functional 
data’.     
 
One approach to find clusters based on functional data is to first decompose the variation in 

the data by applying a functional principal component analysis (FPCA) and subsequently, to 

cluster the corresponding principal component scores. The application of FPCA enables the 

dimension of the functional data to be substantially reduced and hence provides a very 

computationally efficient way of exploring any underlying structure in the data. 

FPCA can be used to identify the dominant modes of variation in a data set. In the functional 
case, both the data and the estimated functional principal components (FPCs) are curves. The 
FPCs can be thought of as a set of orthogonal basis functions constructed so as to account for 
as much variation as possible. Full details of functional principal components are provided in 
Ramsay and Silverman (1997). 
 
Following the estimation of functional principal component scores, standard statistical 

clustering approaches can be applied such as k-means, hierarchical and model based 

clustering (Fraley and Raftery, 1998).  The principal component scores have been weighted 

firstly to account for the proportion of variability each component explains and then also to 

account for spatial variability prior to the application of clustering procedures. 

To obtain the weights which were used to account for spatial variability, a global Moran’s I 

(Anselin, 1995) is calculated.  This is a measure of the spatial homogeneity in the lake.   If 

there is little evidence of any long term trend in the spatial pattern over time, this measure of 

spatial correlation can be based on the temporal mean lake surface.   Moran’s I is computed 

using correlations between each pixel and its neighbouring pixels to provide a measure of 

spatial correlation that summarises how similar neighbouring pixels are to one another.  This 

value can be incorporated into the clustering by weighting the set of FPC scores by an 

appropriate neighbourhood matrix.  

In order to choose the statistically optimal number of clusters there are well developed data-

driven methods such as the L-curve, gap statistic (Tibshirani et al., 2001) and Dunn Index 

(Dunn, 1974) which can be utilised.  Each of these methods was explored for Lake Balaton.  
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Application of Clustering at Lake Balaton 

Figure 2 shows the spatial mean surface for Chlorophyll a (mg/m3) at Lake Balaton over the 

time period. The 

two pixel boundary 

has been removed 

in this image. As 

can be seen, there 

is broad variation 

across the surface 

of the lake, with 

much lower values 

of Chl a in the 

upper basin of the 

lake.  From these 

data Moran’s I was 

calculated as 0.89.  

This relatively high 

value reinforces that there is a strong spatial correlation structure across the surface of the 

lake in terms of the temporal mean values for each pixel.  

Smooth functions were fitted to the curves corresponding to each pixel using a b-spline basis.  

There is some question as to how to select the flexibility of the smooth curve as clustering 

results can be sensitive to the degree of smoothing applied.  Too much smoothing may mean 

important features in the data are missed, while too little smoothing will result in an 

estimated function that follows the observed data closely and has high variation in local 

areas. 

 Preliminary results are presented here for Lake Balaton where the flexibility of smoothing 

was selected by allowing one degree of freedom per season (3 months).  This quantity of 

smoothing was selected as it enabled the estimated smooth curves to capture the key 

features of the time series without retaining excessive local variability.  After estimating the 

smooth function for all pixels FPCA was applied to the full set of curves.  The first two 

principal components were found to account for 90% of the variability in the data and so 

clustering was applied to the first two principal component scores only. 

Figure 2: Map showing temporal mean Chlorophyll a (mg/m3, MPH product) 
over surface of Lake Balaton 
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Figures 3 and 4 show 

clustering results after 

applying model based 

clustering.  The L-curve 

and Dunn Index 

indicated that 4 clusters 

was the statistically 

optimal number for 

describing variability in 

the pixel curves.  Figure 

3 displays the spatial 

distribution of the 

clusters, with each cluster 

represented by a different 

colour, while Figure 4 shows 

the uncertainty in 

cluster classification 

associated with each 

pixel.  In general, the 

pixel curves are well 

separated into the 

clusters, with increased 

uncertainty only at the 

boundaries of the 

clusters.  The clustering 

has identified 4 distinct 

regions within the 

lakes. 

It is reassuring to see the 

spatial homogeneity amongst the clusters, with only a small proportion of pixels appearing 

‘inconsistent’ with their neighbours.  These pixels are identified as having the greatest values 

of uncertainty associated with them. 

Figure 5 shows the temporal mean Chlorophyll a curves for each cluster.  Colours correspond 

to those in Figure 3. The most apparent feature is the peak at the start of 2003 for Cluster 1 

(purple).   As this dominates the scale of the mean curves, Figure 6 shows the same results 

but from mid 2003 onwards. Beyond 2003 it is clear that Cluster 3 displays most variability in 

terms of Chlorophyll and is generally higher than the other clusters.  Cluster 4, shown in red 

and located in the top section of Lake Balaton tends to have lower values, particularly from 

2008 onwards, where there is minimal variability in the Chlorophyll levels.  

Figure 3 Map of Lake Balaton showing results of model based clustering for Chlorophyll a 
(mg/m3, MPH product). Cluster assignment for each pixel indicated by different colours. 

Figure 4 Map of Lake Balaton with cluster membership uncertainty for each pixel 
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Summary 

It has been demonstrated that clustering approaches can be applied to EO data in order to 

identify coherent regions within lakes.  Data driven approaches can be used to let the 

patterns in the data determine the number of clusters which is statistically optimal.    

In contrast to standard clustering approaches, treating the pixel curves as functional data 

enables not only the mean value to inform the cluster membership, but also ensures 

temporal patterns such as trends and seasons are incorporated.  Dimension reduction via 

spline smoothing and functional principal component analysis ensures clustering methods 

are computationally efficient. 

 

 

 

 

 

 

Figure 5 Temporal cluster mean curves for Chlorophyll a at Lake Balaton. Colours correspond to those shown in Figure 3. 

Figure 6 Temporal cluster mean curves for Chlorophyll a at Lake Balaton from 2003 onwards. Colours correspond to those 
shown in Figure 3. 
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